
Poster: Cloud API Testing
Junyi Wang, Xiaoying Bai, Haoran Ma , Linyi Li , Zhicheng Ji

Department of Computer Science and Technology
Tsinghua University

Beijing, China
baixy@tsinghua.edu.cn, {wangjuny15, ly-li14, mhr15, jzc15} @mails.tsinghua.edu.cn

Abstract—Following the Service-Oriented Architecture,
Cloud services are exposed as Web APIs (Application Program
Interface), which serve as the contracts between the service
providers and service consumers. With increasing massive and
broad applications of Cloud-based development, a large number
of diversified APIs are emerging. Due to their wide impacts, any
flaw in the cloud APIs may lead to serious consequences. API
testing is thus necessary to ensure the availability, reliability, and
stability of cloud services. The research proposed an approach to
automating API testing following the model-driven architecture,
so that services can be continuously fetched, analyzed and
validated. A prototype system ATcloud was constructed to
illustrate the process of API understanding, test scenario
modeling using directed graph annotated with transfer
probabilities between operations, cloud-based test resources
management, distributed workload simulation, and performance
monitoring.

Keywords—API testing; test automation; cloud computing

I. INTRODUCTION
 API (Application Program Interface), especially Web

APIs for Internet software, provide a natural way to wrap and
deliver software functions as self-contained services that can be
accessed through standard protocols. By serving as the
contracts between service providers and service users, APIs
can effectively shield heterogeneity as well as enforce
decoupling. However, the inherent open, collaborative, and
dynamic characteristics of Web APIs raise new threats to the
quality of systems developed by composing services. API
testing is thus gaining more and more attentions .

Cloud platforms, such as Amazon, Azure and Ali, provide
APIs for various services including infrastructure services,
storage services, data services, and more and more rich
application services such as cognitive services and machine
learning services. According to programmable Web report [1],
there have been over 15,000 APIs available nowadays, a
considerable increase from around 200 APIs in 2005. As Cloud
APIs are widely used and continuously evolve online, there is a
pressing need of an automatic testing approach to constantly
detect the changes and potential defects in the services [2, 3].

The paper reported ATcloud, a model-based automatic
testing framework and a prototype system to support Cloud
API testing. Fig. 1 gives an overview of the proposed approach.

Fig. 1. Approach Overview

1) API Understanding. It automatically gatheres the API
specifications from Cloud websites, interpretats the syntax and
semantics of service data and operations, then transforms it
into internal semi-formal representations.

2) Test Generation. With built-in strategeis, test cases are
generated at different levels using different algorithms.

3) Test Engine. Test cases are encoded in executable
scripts to be deployed at host environment, trigger on schedule.
In this research, a test Cloud was built to dynamically allocate
testing resources on demand across platforms.

4) Test Analyzer. Test results are collected, verified and
validated against requirements. A monitor was built to gather
peformance indicators, visulize and report system status
during testing.

II. API UNDERSTANDING

Fig. 2. API Understanding

Fig. 2 shows the process of API Understanding, which
crawls Cloud services, interprets API specifications, and
transforms them into XML-encoded description for automatic
test generation.

10th IEEE International Conference on Software Testing, Verification and Validation Workshops

978-1-5090-6676-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSTW.2017.71

384

10th IEEE International Conference on Software Testing, Verification and Validation Workshops

978-1-5090-6676-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSTW.2017.71

384

10th IEEE International Conference on Software Testing, Verification and Validation Workshops

978-1-5090-6676-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSTW.2017.71

385

A. Domain Knowledge Capture
In addition to capturing data and operation definition, a key

issue in API understanding is the modeling of domain
knowledge in terms of constraints and conditions. For example,
a constraint of parameter InstanceName says that: “the name of
the instance is required to contain [2,128] English or Chinese
characters, and it must be in uppercase letters or "-".
InstanceId, which default is instance, cannot start with ‘http: //’
or ‘https: //’”. This type of constraint is critical to system
robustness and reliability testing, but usually insufficiently
defined in interface specification. To enhance the modeling
capability with interface semantics, it has a great potential to
improve test effectiveness and efficiency.

B. API Scenario Modeling

Fig. 3. An Example API Scenario Model.

A complex scenario by composing multiple APIs executed
in sequence usually has a higher potency to reveal defects than
single API testing. To capture API composition scenarios, a
directed diagraph is defined to model the control flow and data
flow among API invocations, as shown in Fig. 3. A node in the
graph represents an API operation, and a directed link between
two nodes represents a valid execution sequence between two
operations. The link can be a conditional transfer, which is
annotated with a Boolean expression of the conditions, or an
iteration, which is annotated with the number of repeated times.
In addition, the link is annotated with transfer probability to
identify the differences in invocation frequencies among
different operations. A formal definition of the scenario model
is defined as follows:

Scenario: =<ID, Name, Description, Duration, Size,
ThinkTime, Services, Matrix, Start, End >

Where Size represents the number of simulated users.
ThinkTime represents the time interval for user application.
Matrix is the transfer probability matrix, which is generated
after traversing the directed transfer probability diagraph. Start
and End defines the entrance and exit of the matrix.

III. API TEST GENERATION
Test cases are generated at following levels:

• Test data generation based on API data specification
and domain knowledge

• Test operation generation based on API operation
specification.

• Operation sequence generation by traversing the paths
in the directed graph of the scenario model.

• Workload generation by generating the operation
sequences following the statistical distributions of the
transferring probabilities in the scenario model.

The algorithm is described as Fig. 4:

Fig. 4. API test generation algorithm

IV. MASSIVE SCALABLE WORKLOAD SIMULATION
To simulate large-scale API invocations from

geographically distributed clients, ATcloud maintains a pool of
Cloud resources from various vendors and data centers to
provision test resources on demand. As shown in Fig. 5, test
tasks are wrapped, scheduled and remotely deployed to
available VM (Virtual Machine) instances.

Fig. 5. On-demand resource allocation.

V. SUMMARY AND CONCLUSION
A large number of Cloud APIs have been published, which

constantly evolve online and widely influence system
constructions. The paper presents the testing framework and
the ATcloud system to support Cloud API testing. It made an
early attempt to address several key issues of API testing in
Internet-scale. ATcloud aims to promote automatic API
understanding and testing to facilitate continuous quality
control of Cloud-based software systems.

REFERENCES
[1] Programmable Web, “programmable Web report,”

https://www.programmableweb.com, 2005, accessed 26 January 2017.
[2] J. Gao, X. Bai, W.T. Tsai, "Cloud testing-issues, challenges, needs and

practice," Software Engineering: An International Journal, 2011, Vol. 1,
no.1, pp.9-23.

[3] J. Gao, X. Bai, W. T. Tsai and T. Uehara, "Testing as a Service (TaaS)
on Clouds," 2013 IEEE Seventh International Symposium on Service-
Oriented System Engineering, Redwood City, 2013, pp. 212-223.

385385386

